A\

AMPERE.

Deploying AlO on Tencent

Cloud for Al Inference Usages

Tencent CVM standard SR1 is the first new generation of CVM standard computing instance specifications launched by Tencent Cloud
equipped with ARM architecture processors. SR1 is based on the Ampere® Altra® processor with an all-core consistent operating frequency
of 3.0 GHz. The number of instance cores ranges from 1 core to 64 cores and supports 1:2, 1:4, and other processors/memory ratios.

Compared with the x86 architecture instance, the users get excellent value for money. Ampere provides an optimized Al framework
(Ampere Al) for the SR1 instance based on the Ampere Altra processor and provides free images for customers to use through the Tencent
Image Marketplace.

This article will introduce how to create an SR1 instance on Tencent Cloud and evaluate the performance of computer vision classification
based on TensorFlow.

Al Inference with CPU

Presently, there are three main sources of computing power for Al reasoning applications, namely CPU+Al dedicated chips, CPU+GPU, and
pure CPU. According to the Al hardware insights report previously released by Statista and McKinsey, CPU-based inference currently
accounts for more than 50%. Compared to the other two modes, there are several main reasons for using CPU for Al inference:

* More portable and no vendor lock

e Fewer complexities involving operating systems, drivers, runtime libraries, and more

¢ Continuous innovations in Al model algorithms (e.g., sparsity, quantization, etc.) on the CPU can provide high throughput close to the
GPU.

e Easier to scale out and integrate with other software stacks.

More importantly, building inference applications on the CPU can easily integrate Al into business logic modules and integrate into the
Cloud Native system of microservices.

Ampere Computing® / 4655 Great America Parkway, Suite 601/ Santa Clara, CA 95054 / amperecomputing.com

Create SR1 Instance

Create a 16vCPU SR1 instance SR1.4XLARGE3?2 for evaluation, which is configured with 16 Ampere Altra physical cores and 32GB of
memory.

1. Loginto Tencent Cloud's console.
2. Select New under the Instance category, and you will enter the instance creation page.

3. Since SR1 is currently only available in Guangzhou Sixth District, select Guangzhou > Guangzhou Sixth District > Standard SR1.

REELE BEYES
1R 2ig8THl JFEAREREE
i a=aE EEITE Finssl | @ FEEs

1
=r = e sa wms B ge e B
EIHE FEH AR I = THEE I HEE] T HEEER @
s wpc-4dibmTOr | DefaultVPS (REA) 11T » subnet-07furi 4 | Defsuh-Subnet (RELA) v
| SHCFU v SEAE ~

e

smm | mEm o e 4ER | GPUNIE | FRAME | ANdER | SeETEES
eTmpE | RAESS | AESA | EESS | inSTRuEmsss il ﬁﬂsm +RaRIS.

4. Then you will see SR1 instances of different specifications, choose the instance of SR1.4XLARGE32 specification.

Ampere Alira{2.8

« RERSR1 SRI4XLA.. 1688 32GB GHz) 6Ghps 1MOFPPS
RERSR1 SRLENLA. 32 4GB 4o T 12Gbps 205PPS

_ Ampere Alira(2.3
IFEEISRT SRIIGXL.. 64 128GB L noooe 23Ghps 45073PPS

GHz)

Ampere Computing® / 4655 Great America Parkway, Suite 601/ Santa Clara, CA 95054 / amperecomputing.com

5. Foran OSimage, select Image Marketplace > Select from Marketplace, then search for Ampere, and select TF - Ampere® Al Optimizer
- Ubuntu 20.04 image to use Ampere's SR1-optimized TensorFlow 2.7 and free examples.

WIS

Ampere Q

TF - Ampere® Al Optimizer - Ubuntu 20.04

6. After setting other instance configurations, you can confirm the configuration and activate the instance.

Start and Connect to the Instance

After creating the instance, you can start and log in. You can obtain the IP address of the instance from the console. Depending on the login
method set during creation, you can log in to the instance either using a password or a key.

$ ssh ubuntu@<public ip address of the instances>

After logging in, a welcome screen of Ampere Al is displayed.

#m# ###-v@@_
=(0# :0@: =@O#
/@# 0@ @

Thank you for choosing AIO!
Please visit us at https://solutions.amperecomputing.com/solutions/ampere-ai

i qulck start please run:
i /; bash download models.sh; bash star otebook.sh

This image not only integrates Ampere-optimized TensorFlow, but it also contains lots of example code, which can also be obtained from
Github.

Ampere Computing® / 4655 Great America Parkway, Suite 601/ Santa Clara, CA 95054 / amperecomputing.com

https://github.com/AmpereComputingAI/aio-examples

Running the TensorFlow AIO Example

TensorFlow is an end-to-end open-source machine learning platform. It has a comprehensive and flexible ecosystem of tools, libraries, and
community resources that enable researchers to improve machine learning techniques and developers to easily build and deploy machine
learning powered applications.

The OS image chosen from the image marketplace already includes TensorFlow 2.7 optimized for the Ampere Altra CPU. To run the sample
program provided by aio-example, you need to download the model first. aio-examples provide different models, including image
classification and object detection with 32-bit, 16-bit, and 8-bit models.

$ cd aio-examples

$./download models.sh

Depending on the network conditions, downloading all models will take a few minutes. Use the TensorFlow ResNet_50_v15 classification
model for testing and evaluation. ResNet-50 is one of the most used classification models for images.

Since the Ampere Altra CPU is single-core and single-threaded, each vCPU in SR1 corresponds to an Altra physical core, so when testing
with SR1.4XLARGE32, we specify AIO_NUM_THREADS as 16. We first test the double-precision model for FP32.

cd classification/resnet 50 v15
export AIO NUM THREADS=16
python3 run.py -m resnet 50 v15 tf fp32.pb -p fp32

ubuntu@vM-0-21-ubuntu:~/aio-examples/classification/resnet_50_v15$% python3 run.py -m resnet_50_v15_tf_fp32.pb -p fp32
fusr/lib/python3/dist-packages/requests/__init_ .py:89: RequestsDependencyWarning: urllib3 (1.26.9) or chardet (3.0.4)
oesn't match a supported version!

warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

Running with 16 threads

Top-1 accuracy = 0.800

Top-5 accuracy = 1.000
Accuracy figures above calculated on the basis of 5 images.

Latency: 15 ms
Throughput: 65.36 ips

With 16 cores, ResNet_50_v15 can process 65.36 images per second (65.36 ips) with a latency of 15 ms.

Ampere Computing® / 4655 Great America Parkway, Suite 601/ Santa Clara, CA 95054 / amperecomputing.com

https://github.com/AmpereComputingAI/aio-examples
https://github.com/AmpereComputingAI/aio-examples

Next, we test the FP16-based model.

cd classification/resnet 50 v15
export AIO NUM THREADS=16
python3 run.py -m resnet 50 v15 tf fplé6.pb -p fplé6

ubuntu@VM-0-21-ubuntu:~/aio-examples/classification/resnet_50_v15% python3 run.py -m resnet_50_wl5_tf_fpl6.pb -p fplé
fusr/lib/python3/dist-packages/requests/__init__ .py:89: RequestsDependencyWarning: urllib3 (1.26.9) or chardet (3.0.4)
oesn't match a supported version!

warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

Running with 16 threads

Top-1 accuracy = 0.800
Top-5 accuracy = 1.000

Accuracy figures above calculated on the basis of 5 images.

Latency: 9 ms
Throughput: 115.59 ips

Models with FP16 offer up to 115.59 ips of throughput, and that is because the Ampere Altra processors have native support for FP16.
Compared to the FP32 model, the FP16 model can provide nearly 2x image processing capacity without accuracy loss.

Performance Comparison with Other Instances

The aio-example here can also run on Tencent CVM instances based on Intel CPUs and AMD CPUs. We created 16vCPU instances-
S6.4XLARGE32 and SA3.4XLARGE32. The S6.4XLARGE32 is a 16vCPU instance based on Intel® Xeon® Ice Lake processors, and
SA3.AXLARGE32 is a 16VvCPU instance based on AMD EPYC™ Milan processors. Unlike SR1.4XLARGE32, the 16vCPU on x86 is 16 threads, not
physical cores, and the actual physical core is 8.

We run Intel-TensorFlow on S6.4XLARGE32. Intel-TensorFlow is Intel-optimized TensorFlow to take full advantage of the AVX-512 instruction
set.

AMD also provides ZenDNN optimized for AMD CPU, but the test results with ZenDNN in Tencent CVM are not better than native
TensorFlow, so the following SA3.4XLARGE32 data uses native TensorFlow.

The performance of the "ResNet_50_v15" model on the three CVYM instances is as below.

Table 1: Performance of ResNet_50_v15 Model on the CVM Instances

INSTANCE TYPE VCPU NUMBER PRI:COIEL(E\)IY/ MODEL IPS IPS/PRICE LATENCY(MS)
S6.4xXLARGE32 16 251 fp32 47 18.73 21
SA3.AxLARGE32 |16 1.88 fp32 44 23.29 23
SR1.4xXLARGE32 16 2.04 fp32 65 32.04 15
SR1.4xLARGE32 16 2.04 fpl6 116 56.66 9

We can see that the number of images processed per second (ips), SR1.4xLARGE32 is 40% and 50% higher than that of S6 and SA3
instances of the same shape; if we consider the price difference of a single instance, at the same price, SR1 .4xLARGE32 can achieve 70%
and 40% higher performance than the S6 and SA3 of the same shape.

At the same time, the SR1 instance provides support for FP16, which can achieve higher throughput and lower latency.

Ampere Computing® / 4655 Great America Parkway, Suite 601/ Santa Clara, CA 95054 / amperecomputing.com

https://developer.amd.com/zendnn/
https://cloud.tencent.com/document/product/213/55669
https://developer.amd.com/zendnn/

Visual Example for Jupyter Notebook

aio-example also provides Jupyter Notebook scripts for editing, debugging, and visualizing.
We will walk through the object detection model SSD Inception v2 example:

1. StartJupyter Notebook in CVM.

ubuntu@vM-0-21-ubuntu:~% cd aio-examples/
ubuntu@vM-0-21-ubuntu:~/aio-examples$./start_notebook.sh

On your local system please open a new terminal window and run:

ssh -N -L 8080: 105t:8080 -1 ./your_key.key your_userf@xxx.xXxx.xxx.xXxx

After that open one of the links printed out below in your local browser

Writing notebook server cookie secret to /home/ubuntu/.local/share/jupyter/runtime/notebook
_cookie_secret
Serving notebooks from local directory: /home/ubuntu/aio-examples
Jupyter Notebook 6.4.11 is running at:
http://localhost:8080/7token=1efe6b3850396a796dald804adf73b2e758a62b282941a6ee
or http://127.0.0.1:8080/7token=1efebb3850396a796dad804adf73b2e758a62b282941a6ee
Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).

To access the notebook, open this file in a browser:
file:///home/ubuntu/.local/share/jupyter/runtime/nbserver-6171-open.html
Or copy and paste one of these URLs:
http://localhost: 8080/ 7token=1efebb3850396a796dad804adf73b2e758a62b282941a6ee
or http://127.0.0.1:8080/7token=1efebb3850396a796dad804adf73b2e758a62b282941abee

2. Onanother machine with a browser, execute the following command.

ssh -N -L 8080:1localhost:8080 ubuntu@<public ip address of the instances>

3. Enter the password of the instance and open the ssh tunnel.

4. Enter the following address in a browser to see AlO's Jupyter Notebook:

Flies
Select items to perform actions on them Upload New~ &
0o ~ I Name ¥ Last Modified File size
cation 28 minutes ago
detectio 25 days ago
an hour ago
dow d models.sh 25 days ago 2.17kB
3 README.md 25 days ago 1.62kB

tebook.s 25 days ago 571B

Ampere Computing® / 4655 Great America Parkway, Suite 601/ Santa Clara, CA 95054 / amperecomputing.com

5.

6.

Select object_detection > examples.ipynb, to view the Object Detection Examples page.

Object Detection Examples

Deep Learning Performance Acceleration a= b
X »_’A ﬁk’

Please visit us at hitps.//amperecomputing.com

COCO Dataset Overview

These examples are using subset of COCO object detection validation set from year 2014. COCO is a large-scale object detection, segmentation, and
caplioning dataset.

More info can be found here: hitps:/cocodataset.org

Click Cell > Run All to run the code.

File Edit View Insert Cell Kernel Widgets Help
+ X @a B +» ¢ Run Cells tri-Enter
Run Cells and Select Below |Shift-Enter 2 .
SSD Mol : - Ising TFLite
Run Cells and Insert Below Alt-Enter
This example ¢ wdel quantized to int8 precision with the use o
precision as th Run All Above ficant speed-up while allowing only a litle deg
MobileNet arct df
Run All Below
In []: input_shape
threshold = Cell Type ¢
path_to_moc at_v2_tflite_int8.tflite"
Current Outputs »
In []: # loading 1t aj Output » [nterpreter

Ampere Computing® / 4655 Great America Parkway, Suite 601/ Santa Clara, CA 95054 / amperecomputing.com

7.

Check the result.

In [40]:

running the model with AIO enabled in fpl6 precision
tf.AIO.force_enable()

with tf.compat.vl.Session(config=config, graph=graph) as sess:
warm-up run
_ = sess.run(output_dict, feed dict)

actual run

start = time.time()

output_aio = sess.run(output_dict, feed dict)
finish = time.time()

latency ms = (finish - start) * 1000
print("\nSSD Inception v2 FP16 latency with AIO: {:.@f} ms\n".format(latency ms))

SSD Inception v2 FP16 latency with AIO: 23 ms

In [41]:

running the model with AIO disabled in fpl6 precision
tf.AIO.force_disable()

with tf.compat.vl.Session(config=config, graph=graph) as sess:
warm-up run
_ = sess,run(output_dict, feed_dict)

actual run

start = time.time()

output_no aio fplé = sess.run(output dict, feed dict)
finish = time.time()

latency ms = (finish - start) * 1008
print("\nSSD Inception v2 FP16 latency without AIO: {:.0f} ms\n".format(latency ms))

S50 Inception v2 FP16 latency without AIO: 2689 ms

In [43]:

running the model with AIO disabled in fp32 precision
tf.AIO.force_disable()

with tf.compat.vl.Session(config=config, graph=graph) as sess:
warm-up run
_ = sess.run{output_dict, feed dict)

actual run

start = time.time()

output_no_aio_ fp32 = sess.run(output_dict, feed dict)
finish = time.time()

latency ms = (finish - start) * 1000
print("\nSSD Inception v2 FP32 latency without AIO: {:.8f} ms\n".format(latency_ms))

SSD Inception v2 FP32 latency without AIO: 76 ms

Ampere Computing® / 4655 Great America Parkway, Suite 601/ Santa Clara, CA 95054 / amperecomputing.com

200

200

400 400

600 600

1] 800

1000 1000

1200 1200

0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750

SSD Inception v2 FP16 output with AIO enabled 55D Inception v2 FP16 output with AIO disabled

200

400

600

800

1000

1200

0 50 500 750 1000 1250 1500 1750

SSD Inception v2 FP32 output with AIO disabled

Similarly, you can also run other examples in aio-examples.

Summary

The Tencent SR1 instance is powered by Ampere Altra Cloud Native processor, featuring scalable performance, consistent operating
frequencies, and single-threaded cores. Combining with Ampere optimized frameworks, SR1 can achieve a price-performance advantage of
1.7x over x86-based instances in Al inference.

In addition to the free images on the Tencent Cloud Marketplace, users can also obtain ready-to-use docker images, including code and
documentation, from the Ampere Solutions website, which can be downloaded after accepting the End User License Agreement. The
docker image contains a standard ML framework (TensorFlow, PyTorch, ONNX, etc.) pre-installed with optimized software to run inference
scripts on Tencent CVM SR1 without changes. Example models for image classification and object detection are also provided in the image.

Furthermore, Ampere offers Ampere Model Library (AML). It contains a number of ready-to-use Computer Vision, Natural Language
Processing (NLP), and Recommender models. AML can be accessed on GitHub: https://github.com/AmpereComputingAl/
ampere_model_library.

The Ampere Computing Trial Access Program_is open for SR1 instances application. Developers who are interested can try SR1 instances for
free through this program.

Ampere Computing® / 4655 Great America Parkway, Suite 601/ Santa Clara, CA 95054 / amperecomputing.com

https://solutions.amperecomputing.com/solutions/ampere-ai
https://github.com/AmpereComputingAI/ampere_model_library
https://github.com/AmpereComputingAI/ampere_model_library
https://solutions.amperecomputing.com/where-to-try

Resource Links

https://solutions.amperecomputing.com/solutions/ampere-ai
https://github.com/AmpereComputingAl/aio-examples

¢ https://cloud.tencent.com/document/product/213/55669
https://developer.amd.com/zendnn/

October 11, 2022 AMP 2022-0075
Ampere Computing® / 4655 Great America Parkway, Suite 601/ Santa Clara, CA 95054 / amperecomputing.com

https://solutions.amperecomputing.com/solutions/ampere-ai
https://developer.amd.com/zendnn/
https://cloud.tencent.com/document/product/213/55669
https://github.com/AmpereComputingAI/aio-examples

	AI Inference with CPU
	Create SR1 Instance
	Start and Connect to the Instance
	Running the TensorFlow AIO Example
	Performance Comparison with Other Instances
	Visual Example for Jupyter Notebook
	Summary
	Resource Links

