

Web Services Efficiency – Reference Architecture

 Ampere Computing Proprietary AMP 2023-0050

Ampere® Altra® Family 64-Bit Multi-Core Processors

Web Services Efficiency – Reference Architecture
May 10, 2023

Document Issue 1.00

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 2

Contents

1. About Web Services .. 6

1.1 Scope and Audience .. 6

2. DeathStarBench/socialNetwork Architecture ... 7

2.1 DeathStarBench/socialNetwork Components .. 7

2.1.1 Web Frontend: NGINX .. 7

2.1.2 Caching Layer: REDIS ... 8

2.1.3 Caching Layer: MEMCACHED .. 9

2.1.4 Databases: MONGODB .. 9

2.1.5 Application Layer: PYTHON, C/C++, LUA ... 9

2.1.6 Workload Generators: WRK2 .. 10

3. Deployment ... 11

3.1 Hardware Configuration .. 11

3.1.1 Ampere Servers ... 11

3.1.2 x86 Servers .. 11

3.2 Software Configuration ... 12

3.3 Prerequisites .. 12

3.4 DeathStarBench/socialNetwork on GitHub .. 12

3.5 Building AArch64 Images .. 13

3.6 Deploying the Social Network Application .. 13

3.7 Standalone vs Clustered Deployment ... 14

3.7.1 Standalone Mode (Default) ... 14

3.7.2 Sharded, Replicated Setup .. 14

3.8 Running the Load Generator ... 15

3.9 Monitoring Using Grafana and Prometheus ... 16

4. Benchmarking .. 17

4.1 Benchmarking Configuration .. 17

4.2 Benchmarking Steps .. 18

4.3 Benchmarking Results ... 20

4.4 Rack and Datacenter-Level Efficiency ... 22

5. Conclusion ... 24

6. Additional Resources ... 25

7. Appendix .. 26

7.1 Configuration Parameters for Deploying the Social Network Application ... 26

7.2 SLC on Ampere Altra and Altra Max .. 27

7.3 Footnotes .. 27

Web Services Efficiency – Reference Architecture

Contents (continued)

Document Issue 1.00 Ampere Computing Proprietary 3

8. Revision History ... 28

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 4

Figures

Figure 1: Evolution of Web Services .. 6

Figure 2: Social Network Application Components ... 7

Figure 3: User Signup and Login .. 8

Figure 4: Home Timeline Service ... 8

Figure 5: MongoDB Workflow ... 9

Figure 6: MongoDB Sharded Deployment .. 14

Figure 7: Redis Clustered Deployment .. 15

Figure 8: DeathStarBench/socialNetwork Application Deployed on a 3-Node Kubernetes Cluster .. 17

Figure 9: Verifying Node Status, kube-systems, and Flannel Pods ... 18

Figure 10: Verifying Pods and Services in Running State .. 19

Figure 11: Web Services for Social Network (DSB) – 1-Node Cluster vs. 3-Node Cluster with P99 Latencies 20

Figure 12: Web Services for Social Network (DSB) – Relative Performance at Rack Level .. 20

Figure 13: Web Service – Social Network Latency Distribution .. 21

Figure 14: Power Usage on 3-Node Intel Ice Lake vs. Altra Max M128-30 Cluster .. 22

Figure 15: Ampere M128-30 vs. Intel Ice Lake 6342 .. 22

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 5

Tables

Table 1: Ampere Servers BoM (Quantity: 3) ... 11

Table 2: x86 Servers BoM (Quantity: 3) .. 11

Table 3: Software Configuration ... 12

Table 4: Versions for Benchmarking ... 13

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 6

1. About Web Services
Any software application that provides a standardized way for machine-to-machine communication over a network can be
considered a web service. Web services use standard protocols and data formats to allow systems and applications to
interoperate to serve a variety of purposes. These include web hosting, social media integrations, data access and
management, facilitating e-commerce transactions and many more.

Initially, web services were deployed on servers hosted in datacenters, and specific servers were dedicated to specific
applications. Over time, virtualization became popular, which meant multiple applications could now be hosted on the same
server. However, hosting providers still needed to manage and maintain the servers in their own datacenters, which soon
became expensive as well as difficult to scale. This general trend gave birth to the era of Cloud Computing.

As cloud adoption increased, challenges with getting certain applications to run in a cloud-based deployment became
evident. The “lift and shift” method generally worked but it really didn’t leverage all of the benefits of “being in the cloud”.
Applications needed to be rearchitected from the ground up. Monolithic codebases gave way to microservices, an approach
where individual microservices are scaled and orchestrated together to deliver the desired end service. This method
optimizes resource utilization, increases manageability and ease of deployment. Further, individual services can be ported to
run on different platforms quickly. Eventually, containerization and virtualization became popular methods for deployment
and management of microservices, and more companies started to integrate tools like Docker and Kubernetes into their
infrastructure.

Most modern web services are built using a microservices architecture and make use of several cloud-native technologies,
whether they are deployed on-premises in a data center or in the cloud.

This evolution is simplified and depicted in Figure 1.

Figure 1: Evolution of Web Services

Monolithic
Application

Distributed
Architecture

Microservices
Model

Kubernetes Service
Mesh

Increased demand for Internet Services Emergence of Docker Demand for Container Orchestration Microservice Evolution

1.1 Scope and Audience

In this document, we showcase how to deploy and scale a real-world, microservice based, end-to-end Web Service
application as modeled by DeathStarBench:socialNetwork on Ampere® Altra® Family Cloud Native Processor systems. This
application suite implements a broadcast-style social network with unidirectional follow relationships similar to Twitter or
Facebook. We also demonstrate how the social network application can be scaled to a multi-node Ampere Altra Max cluster
using Kubernetes to allow more user requests per second (RPS) without compromising response times. Finally, we measure
the maximum performance delivered under load on a multi-node scale-out Ampere Altra Max cluster and compare the
performance to a similar setup using x86 based systems.

This document is a case study that shows sales engineers, cloud service providers, IT Planners, cloud architects, and end-
users how to deploy and manage modern microservice based web services on Ampere processors. Scaling out the web
service deployment beyond a cluster to the rack level shows how organizations can increase compute capacity in every rack
and decrease the number of racks required to run complex web services on Ampere Arm-based servers.

http://microservices.ece.cornell.edu/

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 7

2. DeathStarBench/socialNetwork Architecture
The DeathStarBench/socialNetwork suite is built using popular open-source applications (such as NGINX, Memcached, Redis
and MongoDB) commonly deployed by cloud service providers. The application is implemented with loosely coupled
microservices communicating with each other via Thrift RPCs and written in various languages including C/C++, Python and
Lua Scripts.

Users (clients) send requests over http, which first reach a load balancer, which is implemented using NGINX. Once NGINX
selects the specific web server, it uses a Lua module to talk to the microservices responsible for composing and displaying
posts. The service backend uses Memcached/Redis for caching, and MongoDB for persistent storage for posts, profiles,
media, and recommendations. Finally, the service is instrumented with a distributed tracing system, which records the
latency of each network request and per-microservice processing.

For benchmarking, this deployment uses WRK2 as the load generator to simulate users connecting to the social network
website. Figure 2 depicts the entire architecture.

Figure 2: Social Network Application Components

WRK2

Client

Front end

Nginx

-Thrift

L
o

a
d

 B
a

la
n

c
e

r

Media

Front

end

Logic

Media-

Service

Read

Home

Timeline

Compose

Post

User

Post

Storage

Write

Home

Timeline

Caching and Storage

Memcached
Mongo

DB

Memcached
Mongo

DB

Redis
Mongo

DB

Redis

Memcached
Mongo

DB

Memcached
Mongo

DB

User

Storage

Post

Storage

User

Timeline

Storage

Home

Timeline

Storage

Social-

Graph

Storage

Media

Storage

Unique-

Id

URL-

Shorten

Text-

Service

User

Timeline

Social

Graph

2.1 DeathStarBench/socialNetwork Components

2.1.1 Web Frontend: NGINX

NGINX is an open source, high performance HTTP server and reverse proxy with many other web service-related features
bundled. It is often used as load balancer in the cloud. NGINX implements event-driven architecture to handle incoming
requests. It is built to offer a low memory footprint and high concurrency. NGINX is the most popular web server among high-
traffic websites based on a 2023 netcraft survey.

The social network application in the DeathStarBench (DSB) suite uses OpenResty which is a higher-level application and
gateway platform with NGINX as a component. OpenResty integrates an enhanced version of the NGINX core, an enhanced
version of LuaJIT, Lua libraries, third-party NGINX modules, and most of their external dependencies. It is designed to help
developers easily build scalable web applications, web services, and dynamic web gateways. NGINX provides the web
frontend, where users (clients) send requests over http and these requests are sent using the nginx-lua module to the
microservices responsible for composing, displaying, and storing posts.

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 8

Figure 3 shows the logical flow of the user signup process.

Figure 3: User Signup and Login

WRK2

Client

Front end

Nginx

-Thrift

L
o

a
d

 B
a

la
n

c
e

r

Media

Front

end

Logic

Media-

Service

Read

Home

Timeline

Compose

Post

User

Social

Graph

Post

Storage

Write

Home

Timeline

Caching and Storage

Memcached
Mongo

DB

Memcached
Mongo

DB

Redis
Mongo

DB

Redis

Memcached
Mongo

DB

Memcached
Mongo

DB

User

Storage

Post

Storage

User

Timeline

Storage

Home

Timeline

Storage

Social-

Graph

Storage

Media

Storage

Unique-

Id

URL-

Shorten

Text-

Service

User

Timeline

2.1.2 Caching Layer: REDIS

Redis is an open source, in-memory, key-value data store typically used as a database or a cache. It uses an in-memory
dataset, but data can persist through periodic writes or appends to disk. Being in-memory, Redis is very fast, and can deliver
high throughput at sub-millisecond latencies. It continues to rank highly in popularity among key value stores in the cloud,
according to DB-engines.

Redis is used as the caching layer for the Home Timeline Service for the DSB:socialNetwork. This service lists the status
messages that have been posted by a specific user and all the people they are following on their home page. As the landing
page for users, this data should be as easy to retrieve as possible. Redis stores this information as a ZSET of status
ID/timestamp pairs. Timestamp information provides the sort order, and the status ID is used to fetch the status message
data. Figure 4 shows the workflow for the home timeline service.

Figure 4: Home Timeline Service

WRK2

Client

Front end

Nginx

-Thrift

L
o

a
d

 B
a

la
n

c
e

r

Media

Front

end

Logic

Media-

Service

Read

Home

Timeline

Compose

Post

User

Write

Home

Timeline

Caching and Storage

Memcached
Mongo

DB

Memcached
Mongo

DB

Redis
Mongo

DB

Redis

Memcached
Mongo

DB

Memcached
Mongo

DB

User

Storage

Post

Storage

User

Timeline

Storage

Home

Timeline

Storage

Social-

Graph

Storage

Media

Storage

Unique-

Id

URL-

Shorten

Text-

Service

User

Timeline

Social

Graph

Post

Storage

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 9

2.1.3 Caching Layer: MEMCACHED

Memcached is a well-known, simple, in-memory cache solution and is used by several large companies such as Facebook,
Twitter, and Pinterest. The main use case for Memcached is look-aside caching, to reduce the load on the database. As a
result, users of a social network – for instance – enjoy lower latency and response times when using the platform.

The social network application persists all posts to disk when they are created, but most posts requested by users need to be
served out of memory for performance reasons. This application uses Memcached to store recent and frequently accessed
posts, and as a result optimizes disk usage.

Unlike Redis, Memcached, known for its simplicity, does not offer any in-built high availability (HA) features. There have been
a few open-source Memcached HA solutions (the most popular being Mcrouter by Facebook), but in this case study we
decided to run Memcached in default standalone mode. Separate Memcached pods are deployed and used by different
services. Scalability is limited and when more replicas of Memcached are running, cached data is split across all pods.

2.1.4 Databases: MONGODB

MongoDB is the pioneer of NoSQL databases, which developed because RDBMS systems based on SQL did not support the
scale or rapid development cycles needed for creating modern applications. Instead of storing data in tables of rows or
columns like SQL databases, each record in a MongoDB database is a document described in BSON, a binary representation
of the data. Applications can then retrieve this information in a JSON format. MongoDB can also handle high volume and can
scale both vertically and horizontally to accommodate large data loads.

Figure 5: MongoDB Workflow

WRK2

Client

Front end

Nginx

-Thrift

L
o

a
d

 B
a

la
n

c
e

r

Media

Front

end

Logic

Media-

Service

Read

Home

Timeline

Compose

Post

User

Social

Graph

Post

Storage

Write

Home

Timeline

Caching and Storage

Memcached
Mongo

DB

Memcached
Mongo

DB

Redis
Mongo

DB

Redis

Memcached
Mongo

DB

Memcached
Mongo

DB

User

Storage

Post

Storage

User

Timeline

Storage

Home

Timeline

Storage

Social-

Graph

Storage

Media

Storage

Unique-

Id

URL-

Shorten

Text-

Service

User

Timeline

The social network service’s backend uses MongoDB for persistent storage for user information, posts, profiles, media etc. as
shown in Figure 5 above.

2.1.5 Application Layer: PYTHON, C/C++, LUA

Microservices-based architecture allows each of the many services that are part of the social network application to be
written in different languages and programming models, including C/C++, Python, GO etc. Most of these can be easily ported
to the Arm architecture without any modifications. All major Linux distributions support Arm and provide an extensive library
of common Linux packages built for AArch64. Applications and their dependencies can be recompiled using compilers like
GCC which is fully supported.

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 10

2.1.6 Workload Generators: WRK2

The DeathStarBench suite comes with a modified workload generator WRK2, which is based on WRK. This is an open-loop
implementation of WRK2 which sends out requests according to the schedule regardless of any delay in response for
previously sent requests. Any traffic on the server side will be directly reflected in the real latency results. Latency reporting is
the same as WRK.

WRK2 uses LuaJIT script to perform HTTP request generation, response processing, and custom reporting. There are 4
different scripts that support the following actions:

• Compose Post (text, media, images, shortened URL etc.)

• Read entire user timeline

• Read home timeline

• Mixed workload comprised of all 3 of the above actions

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 11

3. Deployment

3.1 Hardware Configuration

3.1.1 Ampere Servers

Table 1 lists the details of the configuration of the Ampere servers.

Table 1: Ampere Servers BoM (Quantity: 3)

PARAMETER DESCRIPTION

OEM Model Gigabyte Mt. Snow (where to buy)

Motherboard MP32-AR1 (single socket)

BMC Firmware 12.60.10

Sockets 1

CPU/Cores/Threads Ampere Q128-30:

• 128 cores / 128 threads

• 3.0 GHz

• L1d: 8 MiB (128 instances), L1i: 8 MiB (128 instances)

• L2:128 MiB (128 instances), L3:16 MiB (1 instance)

Memory 64GB DDR4, 3200 MT/s

NIC Mellanox ConnectX-4 Lx:

• MT27710 Family

• 8 GT/s x4

• 25 GbE

Storage Samsung NVMe 960.2 GB

3.1.2 x86 Servers

Table 2 lists the details of the configuration of the x86 servers.

Table 2: x86 Servers BoM (Quantity: 3)

PARAMETER DESCRIPTION

OEM Model Dell PowerEdge R650

Motherboard PowerEdge R650 Motherboard (dual socket)

BMC Firmware 1.5.4

Sockets 2

CPU/Cores/Threads Intel Xeon Gold 6342:

• 24 cores / 48 threads

• 2.8 GHz / 3 .5 GHz

• L1d: 2.3 MiB (48 instances) L1i: 1.5 MiB (48 instances)

• L2: 60 MiB (48 instances), L3: 72 MiB (2 instances)

Memory 64 GB DDR4, 3200 MT/s

https://amperecomputing.com/where-to-buy

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 12

PARAMETER DESCRIPTION

NIC Mellanox ConnectX-6 Dx:

• MT2892 Family

• 16 GT/s x16

• 100 GbE

Storage Dell DC NVMe 960 GB

3.2 Software Configuration

Table 3 lists the details of the software configuration of both the Ampere and x86 servers.

Table 3: Software Configuration

PARAMETER DESCRIPTION

Operating System Ubuntu 22.04.1 LTS 5.15.0-60-generic #64-Ubuntu

Docker 23.0.0

Kubernetes 1.23.16

3.3 Prerequisites

• Docker

• Kubeadm, kubelet

• Python 3.5+ (with asyncio and aiohttp)

• libssl-dev (apt-get install libssl-dev)

• libz-dev (apt-get install libz-dev)

• lua5.1

• luarocks (apt-get install luarocks)

• luasocket (luarocks install luasocket)

Make sure the following ports are accessible:

• 8080 for NGINX frontend

• 16686 for Jaeger

3.4 DeathStarBench/socialNetwork on GitHub

The DeathStarBench open-source benchmarking suite is available as a free software from GitHub at:

https://github.com/delimitrou/DeathStarBench

This repo uses x86 based images from docker hub for the various microservices that are part of the social network
application. Before deploying on Ampere Altra or any other Arm-based system, the application images need to be rebuilt for
AArch64.

We have ported the DeathStarBench/socialNetwork benchmark to run on AArch64. The AArch64 version can be downloaded
from the Ampere Computing GitHub repository at:

https://github.com/AmpereComputing/deathstarbench-ah/tree/arm64-port

https://github.com/delimitrou/DeathStarBench
https://github.com/AmpereComputing/deathstarbench-ah/tree/arm64-port

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 13

3.5 Building AArch64 Images

The social network application uses many cloud-native applications like NGINX, Redis, MongoDB etc. The AArch64 images of
these components are available from docker hub. The versions used for this benchmarking are listed in Table 4.

Table 4: Versions for Benchmarking

SOFTWARE VERSION IMAGE LOCATION

Openresty with NGINX 1.15.8.1rc1 https://openresty.org/download/openresty-1.15.8.1rc1.tar.gz

Redis 6.2.4 docker pull redis:6.2.4

Memcached 1.6.7 docker pull memcached:1.6.7

MongoDB 4.4.6 docker pull mongo:4.4.6

The application layer itself is written in C/C++, Python and so can be easily recompiled to run on AArch64 in a few simple
steps as shown below:

cd DeathStarBench/socialNetwork/docker/openresty-thrift/

docker build --no-cache -t arm64/openresty-thrift -f xenial/Dockerfile

cd DeathStarBench/socialNetwork/thrift-microservice-deps/

docker build --no-cache -t arm64/thrift-microservice-deps -f cpp/Dockerfile .

cd DeathStarBench/socialNetwork/media-frontend/

docker build --no-cache -t arm64/media-frontend -f xenial/Dockerfile .

Next, we need to edit the Dockerfile in the socialNetwork folder to use the new image as builder:

cd DeathStarBench/socialNetwork

FROM arm64/thrift-microservice-deps:latest AS builder

docker build --no-cache -t arm64/social-network-microservices -f Dockerfile .

Detailed instructions for porting the application to AArch64 are provided in the Transition and Tuning Guide available here.

3.6 Deploying the Social Network Application

The DeathStarBench/socialNetwork application can be easily deployed on a Kubernetes cluster using helm charts. For
benchmarking on bare metal servers, we use the Kubeadm tool to set up a minimum viable cluster that conforms to best
practices. The cluster is comprised of 3 nodes: the control-plane and 2 worker nodes. The control-plane node is also
configured to act as a worker node and can schedule pods. We deployed the flannel container network interface (CNI)
network add-on for the pods to communicate. All the nodes are connected on an internal network. For this benchmarking,
we used Ubuntu 22.04 as the operating system on all servers.

In this application, every microservice has its own helm chart, which is then assembled under a main helm chart. The main
helm chart contains global values that apply to all microservices and can be overridden by the values.yaml file for individual
microservices.

To deploy using helm charts, start by installing helm on one of the nodes (https://helm.sh). Use the following command to
create a default deployment of the Social Network application:

cd DeathStarBench/socialNetwork/helm-chart

kubectl create namespace social-network

helm install social-network ./socialnetwork/ -n social-network

https://openresty.org/download/openresty-1.15.8.1rc1.tar.gz
https://hub.docker.com/layers/library/redis/6.2.4/images/sha256-27fd246b9b12b62eeca9f9521ef863278eb11151a5d3d6523c34585fe83df4b3?context=explore
https://hub.docker.com/layers/library/memcached/1.6.7/images/sha256-e8810efee7acfc9814ccc56749aa9366d31f21f9795389a607fdf33e337642c3?context=explore
https://hub.docker.com/layers/library/mongo/4.4.6/images/sha256-aa3f99f22e195adee9071152b4c87536f795c21ca233eeb3a28ca33af72ec1d6?context=explore
https://amperecomputing.com/guides/dsb-sn-tuning-guide
https://helm.sh/

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 14

3.7 Standalone vs Clustered Deployment

As the number of clients simultaneously connecting to a web service deployed on a single server increases, the server will
eventually run out of resources and cease performance scaling. The solution is to scale the resources available either by
adding more resources to the servers (vertical scaling, or “scaling up”), adding additional servers (horizontal scaling, or
“scaling out”) or a combination of both. When the cluster is scaled out to multiple servers, the web service must be
configured to ensure the load is evenly distributed across all the servers. The easiest way to do this for the front end and
application tier is to replicate the service on multiple servers. Scaling the database tier is more complicated and requires
running additional services that allow database sharding and clustering.

There are two ways to deploy the different databases and caching layers that are part of the social network application.

3.7.1 Standalone Mode (Default)

Separate pods for each of the database services – MongoDB, Redis and Memcached – are deployed and used by different
services. This type of deployment works on a single node but has limited scalability.

3.7.2 Sharded, Replicated Setup

3.7.2.1 MongoDB Sharding

In this type of deployment, a single MongoDB instance is deployed with support for sharding, replication and persistent
storage. This type of setup reflects real-world usage scenarios. Large data sets are divided into smaller chunks that are
handled separately by individual shards. Each shard has replication enabled to eliminate a single point of failure. The sharded
MongoDB setup can be scaled to run on multi-node clusters. The helm chart for deploying sharded MongoDB has been
integrated with Bitnami’s MongoDB sharded package (see Figure 6).

Figure 6: MongoDB Sharded Deployment

Mongos-1

Mongo Service

Mongo Shard1

Mongos-2 Mongos-3

Mongo Shard1
Mongo Replicas

Mongo Shard2

Mongo Shard1
Mongo Replicas

Mongo Shard3

Mongo Shard1
Mongo Replicas

M
o

n
go

 C
o

n
fig Server

M
o

n
go

 C
o

n
fig Server Service

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 15

3.7.2.2 Redis Cluster

In this mode, master, and multiple replicas of Redis are deployed. It allows scaling read operations by spreading the load
across all replicas. Applications can route read operations to a dedicated Redis service (Redis-Replica) and all insert and
update operations to Redis-master. It is recommended to serve writes through Redis Master and reads through Redis
Replicas. Redis Master replicates writes to one or more Redis Replicas. The master-replica replication is done asynchronously
(see Figure 7).

Figure 7: Redis Clustered Deployment

Redis Replica

Redis MasterClient

Redis Replica Redis ReplicaClient

Redis Master Redis Master
Reads/Writes

Replication

Reads

3.7.2.3 Memcached Cluster

Memcached replicas are deployed along with mcrouter service to achieve replication and data consistency between
Memcached pods. In this scenario, applications can benefit from parallel reads from all Memcached replicas without a risk of
hitting cache miss.

Note: During our testing, we used Memcached in non-clustered mode and plan to explore Memcached clustering in the next
phase. We used the default setup for Memcached, where separate pods are deployed and used by separate services.

3.8 Running the Load Generator

We used a dedicated server that is not part of the Kubernetes cluster as our client system to run the load generator WRK2.
The client system also runs Ubuntu 22.04 as the operating system and connect to the test Kubernetes cluster on an internal
network.

Every test run starts by initializing the dataset. This script registers users and constructs the social graph for the application:

python3 scripts/init_social_graph.py --graph=socfb-Reed98

We used the mixed-workload.lua script to simulate a mix of read/writes on the social network application:

cd DeathStarBench/socialNetwork/wrk2

./wrk -t <num-threads> -c <num-conns> -d <duration> -L -s ./scripts/social-network/mixed-

workload.lua http://localhost:8080 -R <requests-per-sec>

Start the test with a thread count = 10, number of connections = 1000 and duration of 5 minutes. The requests per second
are set to an initial constant throughput (R value) based on the size of the cluster and increased in steps of 500. Each test is
repeated five times for every R value to account for run-to-run variance. There are no resource limits configured for any
containers and containers can use as much of the CPU or memory that the scheduler allows.

cd wrk2

./wrk -t 10 -c 1000 -d 5m -L -s ./scripts/social-network/mixed-workload.lua

http://localhost:8080 -R 1000

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 16

3.9 Monitoring Using Grafana and Prometheus

Prometheus is an open-source systems and service monitoring solution that collects and stores its metrics as time series
data. Grafana or other API consumers can be used to visualize the collected data.

Kube-prometheus is a GitHub repository that collects Kubernetes manifests, Grafana dashboards, and Prometheus rules
combined with documentation and scripts to provide easy to operate end-to-end Kubernetes cluster monitoring with
Prometheus using the Prometheus Operator.

To install kube-prometheus on the Kubernetes cluster, download/clone the repository using the following commands:

git clone https://github.com/prometheus-operator/kube-prometheus.git

cd kube-prometheus

kubectl apply --server-side -f manifests/setup

kubectl apply -f manifests/

kubectl get svc -n monitoring

The Grafana dashboard is accessible via http://<grafana_service_ip>:3000 using the default Grafana credentials — user:
admin, password: admin

Note: The monitoring services are not run during the benchmarking process and are only used for analyzing cpu-utilization,
I/O, and network usage.

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 17

4. Benchmarking
The DeathStarBench/socialNetwork project allows deploying the social network application on a Kubernetes cluster natively
using helm charts. The front-end and application layers of this application run as pods on a Kubernetes cluster allowing
multiple replicas of the pods to be deployed to handle horizontal scaling of the workload.

4.1 Benchmarking Configuration

Figure 8 shows the DeathStarBench/socialNetwork application deployed on a 3-node Kubernetes cluster:

Figure 8: DeathStarBench/socialNetwork Application Deployed on a 3-Node Kubernetes Cluster

NodePort

WRK2
Client

TEST

SERVER

Kubernetes Cluster
NODE-1

PODS

Containers

NGINX
Thrift

Other
Micro

Services

REDIS
MASTER

Compose
Post

Service

REDIS REPLICA

MONGOS

MONGO-SHARD-0

NGINX
Thrift

Other
Micro

Services

REDIS
MASTERCompose

Post
Service

REDIS REPLICA

MONGOS

MONGO-SHARD-1

NGINX
Thrift

Other
Micro

Services

REDIS
MASTERCompose

Post
Service

REDIS REPLICA

MONGOS

MONGO-SHARD-2

Mongo Config Server

PRIVATE
SUBNET

PRIVATE
SUBNET

PRIVATE
SUBNET

NODE-2

PODS

Containers

NODE-3

PODS

Containers

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 18

4.2 Benchmarking Steps

Step 1. Create a Kubernetes cluster: Start by creating a Kubernetes cluster on bare metal servers. Detailed steps for
creating the cluster using the Kubeadm tool are documented in the Transition and Tuning Guide available here.

Step 2. Set up the client system: The workload for the social network application can be run from a separate system
using a client/server topology. We used a bare metal server with the same configuration as the server under test
(SUT) for our client. The client system and the Kubernetes cluster are configured to use the same internal
network.

Start by installing Ubuntu 22.04 on the client system. Install kubectl and copy the KubeConfig file in order for the
client system to access the Kubernetes cluster. Verify the node status is set to Ready and all kube-system and
flannel pods are running (see Figure 9).

Figure 9: Verifying Node Status, kube-systems, and Flannel Pods

Step 3. Deploy the social network application on the Kubernetes cluster using helm: When running on a multi-node
cluster, one replica of the frontend pod (NGINX) and one replica of each application service is deployed on every
node by setting the global.replicas parameter in the helm chart. Database scaling for the backend caching layers
(Redis, Memcached) and database (MongoDB) is implemented by enabling clustering.

cd DeathStarBench/socialNetwork/helm-chart

helm install social-network ./socialnetwork/ -n social-network --set \

global.mongodb.sharding.enabled=true,\

global.mongodb.standalone.enabled=false,\

mongodb-sharded.shards=1,\

mongodb-sharded.mongos.replicaCount=1,\

mongodb-sharded.shardsvr.dataNode.replicaCount=1,\

global.redis.cluster.enabled=true,\

global.redis.standalone.enabled=false,\

global.memcached.cluster.enabled=false,\

global.memcached.standalone.enabled=true,\

mcrouter.memcached.replicaCount=1,\

global.replicas=1 \

--timeout 5m0s

The above example shows the command used to deploy the social network application on a single node. Set the values for
global.replicas and replicaCount for the shards, Mongos, and Redis cluster nodes based on the number of nodes in
the Kubernetes cluster. More information about the commands for deploying the application on different clusters can be
found in the Appendix.

https://amperecomputing.com/guides/dsb-sn-tuning-guide

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 19

Step 4. Once the installation is complete, verify that all the pods and services are in Running state (see Figure 10).

Figure 10: Verifying Pods and Services in Running State

Step 5. This step will initialize the dataset and build the social-graph for the social network application.

cd DeathStarBench/socialNetwork

python3 ./scripts/init_social_graph.py --graph=socfb-Reed98 --ip=<NodeIp> --

port=<NodePort>

Step 6. Run the mixed workload load generator script with initial constant throughput (R value) of 5000 requests per
second (RPS) for a duration of 5 minutes.

cd DeathStarBench/socialNetwork/wrk2

./wrk -t 10 -c 1000 -d 5m -L -s ./scripts/social-network/mixed-workload.lua

http://<node-ip>:<node-port> -R 5000

Record the P99 latency and actual throughput at the end of the run. Repeat the test with the same parameters
five times. Now gradually increase the R value by 500 and run the mixed workload load generator again. Repeat
this process for R values from 5000 RPS to 18000 RPS as you continue to scale number of nodes in the cluster.

We use an SLA (service level agreement) of P99 latency < 2.00 seconds to measure the peak performance for
each test. This is essential for any web service vendor that provides client-facing systems as minimizing latency to
provide a high level of service is critical. We calculate P99 latencies by repeating each test five times and use the
GEOMEAN of the five measured P99 latencies.

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 20

4.3 Benchmarking Results

Figure 11 shows the results of running WRK2 mixed-workload script that simulates users connecting to the web service. We
measured the P99 latency, throughput (RPS), power usage and other metrics in a clustered deployment and used the values
to estimate the performance as the cluster is scaled out to the rack level.

Figure 11: Web Services for Social Network (DSB) – 1-Node Cluster vs. 3-Node Cluster with P99 Latencies

0.00

0.50

1.00

1.50

2.00

2.50

5500 6000 6500 7000 7500

P
9

9
 la

te
n

cy
 (

se
co

n
d

s)

RPS

Web Service: Social Network (DSB)
1-node cluster: P99 Latencies

(SLA: p99 < 2 secs, lower is better)

Altra Max M128-30 Intel Xeon 6342 (IceLake)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

14000 14500 15000 15500 16000

P
9

9
 L

at
en

cy
 (

se
co

n
d

s)
RPS

Web Service: Social Network (DSB)
3-node cluster: P99 Latencies

(SLA: p99 < 2 secs, lower is better)

Altra Max M128-30 Intel Xeon 6342 (IceLake)

As mentioned earlier, we measured the performance of the social network application under a service level agreement (SLA),
where the SLA is set to P99 latency being less than 2.00 seconds. That means any results where P99 latency for user requests
is greater than 2.00 seconds will not be taken into consideration when calculating the peak performance.

The chart above plots the measured P99 latencies with increasing load (RPS). When comparing latencies on the two clusters,
the latencies on Ampere Altra Max are lower, and gradually start increasing as load on the web service increases. On the
other hand, the latencies in the x86 cluster are higher to start with and continue to increase sharply as the load increases. At
peak load measured under SLA, 99% of user requests on Ampere Altra Max received a response 77% faster than from the Ice
Lake server. As the cluster is scaled to 3-nodes, the peak performance improved more than 2x on the Ampere Altra Max
cluster. At this scale, the response times on the Ampere Altra Max cluster were 64% faster than the x86 cluster while
handling the same number of user requests per second.

Figure 12: Web Services for Social Network (DSB) – Relative Performance at Rack Level

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 21

Figure 12 above compares the performance of the social network application in terms of throughput (or RPS) on Ampere
Altra Max to the Intel Xeon 6342 cluster. The Ampere cluster was able to handle higher load (total RPS) while still maintaining
an SLA of P99 latency under 2.00 seconds. We measured the power usage on both the servers at the system level at peak
load and used this data to calculate the performance per watt (Perf/Watt). The lower power consumption on the Ampere
Altra Max servers yields a 1.9x higher Perf/Watt compared to the x86 servers. And finally, combining the performance gains
and the performance per watt advantage results in 1.7x higher performance on Ampere Altra Max at the rack level. That
translates to a single rack of Ampere servers handling 70% more requests per second than a rack of Intel servers. Because of
the high power utilization and lower Perf/Watt observed on legacy x86 servers, one will need 1.5x racks of x86 servers in
order to handle the same load as a single rack of Ampere servers.

Figure 13: Web Service – Social Network Latency Distribution

0.000

0.001

0.001

0.002

0.002

0.003

0.003

0 200 400 600 800 1000 1200

N
O

R
M

.D
IS

T
o

f
La

te
n

cy

P99 latency (msec)

Web Service: Social Network
Latency distribution

Altra Max (M128-30) Intel Xeon 6342(IceLake)

3X more predictable
performance on Altra Max

Another important benchmarking result shows 3x better predictability for response times on Ampere servers. We compared
the distribution of latencies for all user requests during a single test run using the mean and standard deviation measured by
WRK2. The bell curve (normalized distribution) chart shown in Figure 13 illustrates a much narrower range of latencies on the
Altra Max cluster when compared to the Intel Ice Lake cluster. This correlates to more users on the Ampere cluster having a
much faster and more uniform experience even under stressful load conditions.

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 22

4.4 Rack and Datacenter-Level Efficiency

Companies are increasing relying on data centers either on-premises or in the cloud to run their websites, e-commerce
applications and to store various data. The amount of energy required to run these data centers continues to grow rapidly
and to combat this, it is essential to produce more compute capacity in every rack.

The lower power consumption, superior performance, and energy efficiency of the Ampere Altra Max cores, results in fewer
racks of servers being needed to handle the same workload. This delivers much more sustainable consumption by reducing
the overall resource footprint.

Figure 14: Power Usage on 3-Node Intel Ice Lake vs. Altra Max M128-30 Cluster

0

200

400

600

800

1000

1200

1400

1600

1800

Watts

Power Usage 3-node Intel Xeon 6342 Icelake Cluster

Node1 Node2 Node3

0

200

400

600

800

1000

1200

1400

1600

1800

Watts

Node1 Node2 Node3

Power Usage on 3-node Altra Max M128-30 Cluster

Figure 14 shows the power usage measured at the system level on a 3-node Ampere Altra Max cluster and a 3-node Intel
Xeon 6342 cluster while running web services at peak load. It is evident that the power used by the Altra Max servers is
almost half of the power used on the Intel servers while handling the same number of user requests, which eventually leads
to more Ampere Altra Max servers that can be racked on a single rack without exceeding the rack power budget. One the
other hand, the higher power usage on Intel servers leads to less servers per rack and a bigger datacenter footprint (see
Figure 15).

Figure 15: Ampere M128-30 vs. Intel Ice Lake 6342

Ampere M128-30

38 1S/1U Servers

1 Rack*

9.6 kW Total

Intel Ice Lake 6342

43 2S/1U Servers

1.5 Racks*

18.5 kW Total

* Based on 12kW constrained 42U Racks leaving space for network & PDU

Web Tier App

Front End NGINX

Caching Tier Memcached

Key Value
Store

Redis

Back End MongoDB

Applications
C, C++,
Python, Lua

DeathStarBench/socialNetwork
Service

24 Servers 19 Servers

Perf Target

P99 latency < 2 seconds

38 Servers

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 23

We used the performance and power usage data measured on a 3-node cluster and extended that to a rack full of servers
using the same method for the Ampere Altra Max and Intel Ice Lake clusters. Assuming a rack with a power budget of 12 kW
and 42 units of capacity (leaving room for network and other equipment) we calculated the number of servers that can fit in
a rack and computed the performance and power usage at the rack level using those values.

As the chart in Figure 14 illustrates, to match the performance of a single rack of Ampere Altra Max servers running the
DeathStarBench/socialNetwork application, you need 1.5x racks of x86 servers. The x86 servers also use up to 1.9x more
power when running the social network application under the same load.

The rack and datacenter level efficiency shows that using Ampere Altra Cloud Native Processors in your datacenter is
significantly more sustainable and can reduce the overall resource footprint of a modern web service deployment by over
50%. This kind of advantage is truly disruptive, making the Ampere Altra family the most sustainable processor for modern
cloud infrastructure.

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 24

5. Conclusion
The reference architecture and the solution presented here showcases an example of a real-world web service running on a
multi-node cluster with Ampere Altra Max processors. The process of porting and deploying the social network application is
straightforward. The stack uses multiple cloud native technologies on the AArch64 architecture and many of the components
are readily available as docker images from Docker hub and the rest can easily be rebuilt to support AArch64. The
performance comparison on a scaled-out multi-node cluster shows higher and more predictable performance on the Altra
Max systems compared to legacy x86 platforms. We also observed exceptional power and rack level efficiency while running
a large-scale application like a web service.

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 25

6. Additional Resources
• NGINX tuning guide

• MongoDB tuning guide

• Memcached tuning guide

• DeathStarBench/socialNetwork porting and deployment guide (see this link)

https://amperecomputing.com/tuning-guides/nginx-tuning-guide
https://amperecomputing.com/tuning-guides/mongoDB-tuning-guide
https://amperecomputing.com/tuning-guides/memcached-tuning-guide
https://amperecomputing.com/guides/dsb-sn-tuning-guide

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 26

7. Appendix

7.1 Configuration Parameters for Deploying the Social Network Application

Command used to deploy social network application on a 1-node cluster:

helm install social-network ./socialnetwork/ -n social-network --set \

global.mongodb.sharding.enabled=true,\

global.mongodb.standalone.enabled=false,\

mongodb-sharded.shards=1,\

mongodb-sharded.mongos.replicaCount=1,\

mongodb-sharded.shardsvr.dataNode.replicaCount=1,\

mongodb-sharded.common.mongodbDisableSystemLog=true,\

global.redis.cluster.enabled=true,\

global.redis.standalone.enabled=false,\

global.memcached.cluster.enabled=false,\

global.memcached.standalone.enabled=true,\

global.replicas=1 \

--timeout 5m0s

Command used to deploy social network application on a 2-node cluster:

helm install social-network ./socialnetwork/ -n social-network --set \

global.mongodb.sharding.enabled=true,\

global.mongodb.standalone.enabled=false,\

mongodb-sharded.shards=2,\

mongodb-sharded.mongos.replicaCount=2,\

mongodb-sharded.image.pullPolicy="IfNotPresent",\

mongodb-sharded.shardsvr.dataNode.replicaCount=1,\

mongodb-sharded.common.mongodbDisableSystemLog=true,\

global.redis.cluster.enabled=true,\

global.redis.standalone.enabled=false,\

global.memcached.cluster.enabled=false,\

global.memcached.standalone.enabled=true,\

global.replicas=2 \

--timeout 5m0s

Command used to deploy social network application on a 3-node cluster:

helm install social-network ./socialnetwork/ -n social-network --set \

global.mongodb.sharding.enabled=true,\

global.mongodb.standalone.enabled=false,\

mongodb-sharded.shards=3,\

mongodb-sharded.mongos.replicaCount=3,\

mongodb-sharded.image.pullPolicy="IfNotPresent",\

mongodb-sharded.shardsvr.dataNode.replicaCount=1,\

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 27

mongodb-sharded.common.mongodbDisableSystemLog=true,\

global.redis.cluster.enabled=true,\

global.redis.standalone.enabled=false,\

global.memcached.cluster.enabled=false,\

global.memcached.standalone.enabled=true,\

global.replicas=3 \

--timeout 5m0s

7.2 SLC on Ampere Altra and Altra Max

We enabled the option to report SLC as L3 for the tests that are documented here. Details for this setting are documented
here: Altra Family reporting SLC as L3.

7.3 Footnotes

As part of web services performance benchmarking, we observed run-to-run variations in the measured latency and
throughput due to the randomness built into the load generator. We have not configured requests/limits on the CPU or
memory use by the individual microservices, which also leads to run-to-run variations. In order to minimize the effects of
these variations, we ran each test 5 times and used the GEOMEAN of the measured latency and throughput for our final
calculations.

Disclaimer: All data and information contained in or disclosed by this document are for informational purposes only and are
subject to change. This document may contain technical inaccuracies, omissions and typographical errors, and Ampere
Computing LLC, and its affiliates (“Ampere”), is under no obligation to update or otherwise correct this information. Ampere
makes no representations or warranties of any kind, including express or implied guarantees of noninfringement,
merchantability or fitness for a particular purpose, regarding the information contained in this document and assumes no
liability of any kind. Ampere is not responsible for any errors or omissions in this information or for the results obtained from
the use of this information. All information in this presentation is provided “as is”, with no guarantee of completeness,
accuracy, or timeliness.

https://amperecomputing.com/customer-connect/updates/technical-documents/Altra%20Family%20Reporting%20SLC%20as%20L3#:~:text=pdf-,Download,-Ampere%20Computing

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 28

8. Revision History

ISSUE DATE DESCRIPTION

1.00 May 10, 2023 Initial release.

Web Services Efficiency – Reference Architecture

Document Issue 1.00 Ampere Computing Proprietary 29

May 10, 2023

Ampere Computing reserves the right to change or discontinue this product without notice.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

The information contained in this document is subject to change or withdrawal at any time without notice and is being
provided on an “AS IS” basis without warranty or indemnity of any kind, whether express or implied, including without
limitation, the implied warranties of non-infringement, merchantability, or fitness for a particular purpose.

Any products, services, or programs discussed in this document are sold or licensed under Ampere Computing’s standard
terms and conditions, copies of which may be obtained from your local Ampere Computing representative. Nothing in this
document shall operate as an express or implied license or indemnity under the intellectual property rights of Ampere
Computing or third parties.

Without limiting the generality of the foregoing, any performance data contained in this document was determined in a
specific or controlled environment and not submitted to any formal Ampere Computing test. Therefore, the results obtained
in other operating environments may vary significantly. Under no circumstances will Ampere Computing be liable for any
damages whatsoever arising out of or resulting from any use of the document or the information contained herein.

Ampere Computing

4655 Great America Parkway, Santa Clara, CA 95054

Phone: (669) 770-3700

https://www.amperecomputing.com

Ampere Computing reserves the right to make changes to its products, its datasheets, or related documentation, without
notice and warrants its products solely pursuant to its terms and conditions of sale, only to substantially comply with the
latest available datasheet.

Ampere, Ampere Computing, the Ampere Computing and ‘A’ logos, and Altra are registered trademarks of Ampere
Computing.

Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All other trademarks are the
property of their respective holders.

Copyright © 2023 Ampere Computing. All Rights Reserved.

	1. About Web Services
	1.1 Scope and Audience

	2. DeathStarBench/socialNetwork Architecture
	2.1 DeathStarBench/socialNetwork Components
	2.1.1 Web Frontend: NGINX
	2.1.2 Caching Layer: REDIS
	2.1.3 Caching Layer: MEMCACHED
	2.1.4 Databases: MONGODB
	2.1.5 Application Layer: PYTHON, C/C++, LUA
	2.1.6 Workload Generators: WRK2

	3. Deployment
	3.1 Hardware Configuration
	3.1.1 Ampere Servers
	3.1.2 x86 Servers

	3.2 Software Configuration
	3.3 Prerequisites
	3.4 DeathStarBench/socialNetwork on GitHub
	3.5 Building AArch64 Images
	3.6 Deploying the Social Network Application
	3.7 Standalone vs Clustered Deployment
	3.7.1 Standalone Mode (Default)
	3.7.2 Sharded, Replicated Setup
	3.7.2.1 MongoDB Sharding
	3.7.2.2 Redis Cluster
	3.7.2.3 Memcached Cluster

	3.8 Running the Load Generator
	3.9 Monitoring Using Grafana and Prometheus

	4. Benchmarking
	4.1 Benchmarking Configuration
	4.2 Benchmarking Steps
	4.3 Benchmarking Results
	4.4 Rack and Datacenter-Level Efficiency

	5. Conclusion
	6. Additional Resources
	7. Appendix
	7.1 Configuration Parameters for Deploying the Social Network Application
	7.2 SLC on Ampere Altra and Altra Max
	7.3 Footnotes

	8. Revision History

